
Solutions to Exam 2, Math 10560

1. Which of the following expressions gives the partial fraction decomposition of the
function

f(x) =
3x2 + 2x + 1

(x− 1)(x2 − 1)(x2 + 1)
?

Solution: Notice that (x2−1) is not an irreducible factor. If we write the denom-
inator in terms of irreducible factors we get

f(x) =
3x2 + 2x + 1

(x− 1)2(x + 1)(x2 + 1)

since (x2 − 1) = (x− 1)(x + 1). Thus we see that the final answer should be

A

x− 1
+

B

(x− 1)2
+

C

x + 1
+

Dx + E

x2 + 1

2. Use the Trapezoidal rule with step size ∆x = 1 to approximate the integral∫ 4
0 f(x)dx where a table of values for the function f(x) is given below.

x 0 1 2 3 4
f(x) 2 1 2 3 5

Solution: Using the formula for the trapezoidal rule with ∆x=1 we see that
∫ 4

0
f(x)dx ≈∆x

2
(f(0) + 2f(1) + 2f(2) + 2f(3) + f(4)) =

1
2
(2 + 2 + 4 + 6 + 5)

=
19
2

= 9.5

3. Evaluate the integral
∫ ∞

2
xe−x dx.

Solution: First we find the indefinite integral using integration by parts: Let
u = x and dv = e−xdx so that du = dx and v = −e−x. So we have that

∫
xe−x dx = −xe−x −

∫
−e−xdx = −xe−x − e−x + C

Then we see that
∫ ∞

2
xe−x dx = lim

b→∞

∫ b

2
xe−x dx = lim

b→∞
(−xe−x − e−x

)
∣∣∣∣∣
b

2

= lim
b→∞

(
(−be−b − e−b)− (−2e−2 − e−2)

)
= 0− (−3e−2) =

3
e2

1



4. Compute the integral ∫ 3

−3

1
(x + 2)3

dx.

Solution: We have to be careful at the point where the function does not exist,
namely x = −2. So we see that

∫ 3

−3

1
(x + 2)3

dx =
∫ −2

−3

1
(x + 2)3

dx +
∫ 3

−2

1
(x + 2)3

dx.

We work first on the part
∫ 3
−2

1
(x+2)3

dx. We will solve this using u-substitution. If
we let u = x + 2 (so du = dx), then the bounds change from x = −2 to u = 0 and
x = 3 to u = 5. Making the substitution we see that

∫ 3

−2

1
(x + 2)3

dx =
∫ 5

0

1
u3

du = lim
b→0

(∫ 5

b
u−3 du

)

= lim
b→0

(
−u−2

2

) ∣∣∣∣∣
5

b

= lim
b→0

(
−5−2

2
+

b−2

2

)
= lim

b→0

(
− 1

50
+

1
2b2

)
= ∞

So the integral is divergent.

5. Compute the integral ∫ π
2

0
cos (cos(x)) sin(x) dx.

Solution: We solve this by u-substitution. Let u = cos(x) (so du = − sin(x)dx).
Then the bounds of integration change from x = π

2 to u = 0 and from x = 0 to
u = 1. Making the substitutions we get

∫ π
2

0
cos (cos(x)) sin(x) dx =

∫ 0

1
− cos (u) du

=− sin(u)

∣∣∣∣∣
0

1

= − sin(0)− (− sin(1)) = sin(1)

6. Which of the following is an expression of the area of the surface formed by rotating
the curve y = sin x between x = 0 and x = π

2 about the x-axis?

Solution: The formula is given by
∫ b

a
2πy

√
1 +

(
dy

dx

)2

dx

where in our situation a = 0, b = π
2 , y = sin(x) and so dy

dx = cos(x). Plugging all
in and pulling the 2π out we get:

2π

∫ π
2

0
sin(x)

√
1 + cos2(x) dx

2



7. Find the centroid of the region bounded by y = ex, y = 0, x = 0 and x = 1.

Solution: First we note that the area of the region A is given by

A =
∫ 1

0
ex dx = ex

∣∣∣
1

0
= e1 − e0 = e− 1

Now, we find the centroid by finding x and y:

x =
1
A

∫ 1

0
xex dx, y =

1
A

∫ 1

0

1
2
(ex)2 dx

For x, we solve the integral using integration by parts with u = x and dv = exdx so
that du = dx and v = ex. Then we get that

∫
xex dx = xex−∫

exdx = xex−ex+C.
Using this we get

x =
1
A

∫ 1

0
xex dx =

1
e− 1

(xex − ex)
∣∣∣
1

0
=

1
e− 1

((e− e)− (0− 1)) =
1

e− 1

For y we note that (ex)2 = e2x. Then we use u-substitution with u = 2x so that
du = 2dx and the bounds change from x = 0 to u = 0 and from x = 1 to u = 2.
Making the substitution we get

y =
1
A

∫ 1

0

1
2
(ex)2 dx =

1
(e− 1)

1
4

∫ 2

0
eu du =

1
4(e− 1)

(eu)
∣∣∣
2

0

=
1

4(e− 1)
(
e2 − 1

)
=

e + 1
4

.

Thus the centroid lies at the coordinates
(

1
e− 1

,
e + 1

4

)
.

8. Use Euler’s method with step size 0.5 to estimate y(2) where y(x) is the solution
to the initial value problem

y′ = (x− 1)(y − x), y(1) = 2.

Solution: This will require two steps in Euler’s method. For step one, we know
that x0 = 1 and y0 = 2. Additionally, we know that h = 0.5. We also know that
x1 = 1.5 and x2 = 2 so we can stop at step 2.

y1 = y0 + h(x0 − 1)(y0 − x0) = 2 + (.5)(0)(1) = 2

y2 = y1 + h(x1 − 1)(y1 − x1) = 2 + (.5)(1.5− 1)(2− 1.5) = 2 + (.5)3 = 2.125

9. Compute the arc length of the curve y = 2
3x

3
2 from x = 0 to x = 3.

Solution: We see that dy
dx = x

1
2 =

√
x. Plugging into the formula for arc length

we get that

arc length =
∫ 3

0

√
1 + (

√
x)2 dx =

∫ 3

0

√
1 + x dx =

2
3

(
(x + 1)

3
2

) ∣∣∣
3

0

=
2
3

(
4

3
2 − 1

3
2

)
=

2
3
(8− 1) =

14
3

3



10. Compute the integral ∫
x2 + 2x

x2 − 1
dx.

Solution: First we do long division dividing x2 − 1 into x2 + 2x. Doing this we
get that

x2 + 2x

x2 − 1
= 1 +

2x + 1
x2 − 1

and ∫
x2 + 2x

x2 − 1
dx =

∫
1 dx +

∫
2x + 1
x2 − 1

dx (1)

The first integral in (1) is straightforward:
∫

1 dx = x + C. The second integral is
obtained using integration by partial fractions. By partial fractions we obtain:

2x + 1
x2 − 1

=
2x + 1

(x− 1)(x + 1)
=

A

x + 1
+

B

x− 1

So we have that
2x + 1 = A(x− 1) + B(x + 1)

Plugging in x = 1 gives 2B = 3 and plugging in x = −1 gives −2A = −1, so we
see that A = 1

2 and B = 3
2 . Using this decomposition gives

∫
2x + 1
x2 − 1

dx =
∫ 1

2

x + 1
dx +

∫ 3
2

x− 1
dx =

1
2

ln |x + 1|+ 3
2

ln |x− 1|+ C

Putting it all together, (1) becomes:
∫

x2 + 2x

x2 − 1
dx = x +

1
2

ln |x + 1|+ 3
2

ln |x− 1|+ C

11. Evaluate the integral ∫ 1

0
(1−√x)8 dx.

Solution: We do this with u-substitution. Let u = 1 − √x so that
√

x = 1 − u
and hence x = (1 − u)2. Using this, we see that dx = −2(1 − u)du. Also, the
bounds of integration go from x = 0 to u = 1 and from x = 1 to u = 0. Making
the substitution gives:

∫ 1

0
(1−√x)8 dx =

∫ 0

1
−2(1− u)u8 du = 2

∫ 1

0
(u8 − u9) du

=2
(

u9

9
− u10

10

) ∣∣∣∣∣
1

0

= 2
((

1
9
− 1

10

)
− 0

)
= 2

(
1
90

)
=

1
45

.

4



12. Find the solution to the initial value problem

(1− x)y′ − y2 = 1, y(2) = 1.

Solution: We can make this into a separable equation in the following way:

(1− x)y′ = y2 + 1

Now, separate and integrate to find the solution:

1
y2 + 1

dy =
1

1− x
dx

and so ∫
1

y2 + 1
dy =

∫
1

1− x
dx

tan−1(y) = − ln |x− 1|+ C

To solve for C we use the initial value y(2) = 1 giving us that tan−1(1) = − ln |2−
1|+ C which implies that C = tan−1(1) = π

4 . Solving for y we get

y = tan
(π

4
− ln(x− 1)

)

13. Solve the initial value problem

y′ =
2x− y

1 + x
, y(1) = 2.

Solution: We first rewrite it as y′ = 2x
1+x − y

1+x which allows us to rewrite as

y′ +
y

x + 1
=

2x

x + 1

Now, it is in standard form for a first-order linear differential equation with P (x) =
1

x+1 and Q(x) = 2x
x+1 . We find the integrating factor (noting

∫
P (x)dx =

∫
1

x+1 dx =
ln |x + 1|):

I(x) = e
∫

P (x)dx = e(ln |x+1|) = x + 1.

So the final solution is given by

y(x) =
1

I(x)

(∫
I(x)Q(x) dx

)
=

1
x + 1

(∫
(x + 1)

(
2x

x + 1

)
dx

)

=
1

x + 1

∫
2x dx =

1
x + 1

(
x2 + C

)

Using the initial value y(1) = 2 tells us that 2 = 1
2(1 + C) which means C = 3. So

finally we have that

y(x) =
x + 1
x2 + 3

5


