Solutions to Exam 2, Math 10560

1. Which of the following expressions gives the partial fraction decomposition of the function

$$
f(x)=\frac{3 x^{2}+2 x+1}{(x-1)\left(x^{2}-1\right)\left(x^{2}+1\right)} ?
$$

Solution: Notice that $\left(x^{2}-1\right)$ is not an irreducible factor. If we write the denominator in terms of irreducible factors we get

$$
f(x)=\frac{3 x^{2}+2 x+1}{(x-1)^{2}(x+1)\left(x^{2}+1\right)}
$$

since $\left(x^{2}-1\right)=(x-1)(x+1)$. Thus we see that the final answer should be

$$
\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}+\frac{D x+E}{x^{2}+1}
$$

2. Use the Trapezoidal rule with step size $\Delta x=1$ to approximate the integral $\int_{0}^{4} f(x) d x$ where a table of values for the function $f(x)$ is given below.

x	0	1	2	3	4
$f(x)$	2	1	2	3	5

Solution: Using the formula for the trapezoidal rule with $\Delta x=1$ we see that

$$
\begin{aligned}
\int_{0}^{4} f(x) d x & \approx \frac{\Delta x}{2}(f(0)+2 f(1)+2 f(2)+2 f(3)+f(4))=\frac{1}{2}(2+2+4+6+5) \\
& =\frac{19}{2}=9.5
\end{aligned}
$$

3. Evaluate the integral $\int_{2}^{\infty} x e^{-x} d x$.

Solution: First we find the indefinite integral using integration by parts: Let $u=x$ and $d v=e^{-x} d x$ so that $d u=d x$ and $v=-e^{-x}$. So we have that

$$
\int x e^{-x} d x=-x e^{-x}-\int-e^{-x} d x=-x e^{-x}-e^{-x}+C
$$

Then we see that

$$
\begin{aligned}
& \int_{2}^{\infty} x e^{-x} d x=\lim _{b \rightarrow \infty} \int_{2}^{b} x e^{-x} d x=\left.\lim _{b \rightarrow \infty}\left(-x e^{-x}-e^{-x}\right)\right|_{2} ^{b} \\
= & \lim _{b \rightarrow \infty}\left(\left(-b e^{-b}-e^{-b}\right)-\left(-2 e^{-2}-e^{-2}\right)\right)=0-\left(-3 e^{-2}\right)=\frac{3}{e^{2}}
\end{aligned}
$$

4. Compute the integral

$$
\int_{-3}^{3} \frac{1}{(x+2)^{3}} d x
$$

Solution: We have to be careful at the point where the function does not exist, namely $x=-2$. So we see that

$$
\int_{-3}^{3} \frac{1}{(x+2)^{3}} d x=\int_{-3}^{-2} \frac{1}{(x+2)^{3}} d x+\int_{-2}^{3} \frac{1}{(x+2)^{3}} d x
$$

We work first on the part $\int_{-2}^{3} \frac{1}{(x+2)^{3}} d x$. We will solve this using u-substitution. If we let $u=x+2$ (so $d u=d x$), then the bounds change from $x=-2$ to $u=0$ and $x=3$ to $u=5$. Making the substitution we see that

$$
\begin{aligned}
& \int_{-2}^{3} \frac{1}{(x+2)^{3}} d x=\int_{0}^{5} \frac{1}{u^{3}} d u=\lim _{b \rightarrow 0}\left(\int_{b}^{5} u^{-3} d u\right) \\
= & \left.\lim _{b \rightarrow 0}\left(-\frac{u^{-2}}{2}\right)\right|_{b} ^{5}=\lim _{b \rightarrow 0}\left(-\frac{5^{-2}}{2}+\frac{b^{-2}}{2}\right)=\lim _{b \rightarrow 0}\left(-\frac{1}{50}+\frac{1}{2 b^{2}}\right)=\infty
\end{aligned}
$$

So the integral is divergent.
5. Compute the integral

$$
\int_{0}^{\frac{\pi}{2}} \cos (\cos (x)) \sin (x) d x
$$

Solution: We solve this by u-substitution. Let $u=\cos (x)$ (so $d u=-\sin (x) d x)$. Then the bounds of integration change from $x=\frac{\pi}{2}$ to $u=0$ and from $x=0$ to $u=1$. Making the substitutions we get

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \cos (\cos (x)) \sin (x) d x=\int_{1}^{0}-\cos (u) d u \\
= & -\left.\sin (u)\right|_{1} ^{0}=-\sin (0)-(-\sin (1))=\sin (1)
\end{aligned}
$$

6. Which of the following is an expression of the area of the surface formed by rotating the curve $y=\sin x$ between $x=0$ and $x=\frac{\pi}{2}$ about the x-axis?
Solution: The formula is given by

$$
\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

where in our situation $a=0, b=\frac{\pi}{2}, y=\sin (x)$ and so $\frac{d y}{d x}=\cos (x)$. Plugging all in and pulling the 2π out we get:

$$
2 \pi \int_{0}^{\frac{\pi}{2}} \sin (x) \sqrt{1+\cos ^{2}(x)} d x
$$

7. Find the centroid of the region bounded by $y=e^{x}, y=0, x=0$ and $x=1$.

Solution: First we note that the area of the region A is given by

$$
A=\int_{0}^{1} e^{x} d x=\left.e^{x}\right|_{0} ^{1}=e^{1}-e^{0}=e-1
$$

Now, we find the centroid by finding \bar{x} and \bar{y} :

$$
\bar{x}=\frac{1}{A} \int_{0}^{1} x e^{x} d x, \quad \bar{y}=\frac{1}{A} \int_{0}^{1} \frac{1}{2}\left(e^{x}\right)^{2} d x
$$

For \bar{x}, we solve the integral using integration by parts with $u=x$ and $d v=e^{x} d x$ so that $d u=d x$ and $v=e^{x}$. Then we get that $\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C$. Using this we get

$$
\bar{x}=\frac{1}{A} \int_{0}^{1} x e^{x} d x=\left.\frac{1}{e-1}\left(x e^{x}-e^{x}\right)\right|_{0} ^{1}=\frac{1}{e-1}((e-e)-(0-1))=\frac{1}{e-1}
$$

For \bar{y} we note that $\left(e^{x}\right)^{2}=e^{2 x}$. Then we use u-substitution with $u=2 x$ so that $d u=2 d x$ and the bounds change from $x=0$ to $u=0$ and from $x=1$ to $u=2$. Making the substitution we get

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \int_{0}^{1} \frac{1}{2}\left(e^{x}\right)^{2} d x=\frac{1}{(e-1)} \frac{1}{4} \int_{0}^{2} e^{u} d u=\left.\frac{1}{4(e-1)}\left(e^{u}\right)\right|_{0} ^{2} \\
& =\frac{1}{4(e-1)}\left(e^{2}-1\right)=\frac{e+1}{4}
\end{aligned}
$$

Thus the centroid lies at the coordinates $\left(\frac{1}{e-1}, \frac{e+1}{4}\right)$.
8. Use Euler's method with step size 0.5 to estimate $y(2)$ where $y(x)$ is the solution to the initial value problem

$$
y^{\prime}=(x-1)(y-x), \quad y(1)=2 .
$$

Solution: This will require two steps in Euler's method. For step one, we know that $x_{0}=1$ and $y_{0}=2$. Additionally, we know that $h=0.5$. We also know that $x_{1}=1.5$ and $x_{2}=2$ so we can stop at step 2 .

$$
\begin{aligned}
& y_{1}=y_{0}+h\left(x_{0}-1\right)\left(y_{0}-x_{0}\right)=2+(.5)(0)(1)=2 \\
& y_{2}=y_{1}+h\left(x_{1}-1\right)\left(y_{1}-x_{1}\right)=2+(.5)(1.5-1)(2-1.5)=2+(.5)^{3}=2.125
\end{aligned}
$$

9. Compute the arc length of the curve $y=\frac{2}{3} x^{\frac{3}{2}}$ from $x=0$ to $x=3$.

Solution: We see that $\frac{d y}{d x}=x^{\frac{1}{2}}=\sqrt{x}$. Plugging into the formula for arc length we get that

$$
\begin{aligned}
\text { arc length } & =\int_{0}^{3} \sqrt{1+(\sqrt{x})^{2}} d x=\int_{0}^{3} \sqrt{1+x} d x=\left.\frac{2}{3}\left((x+1)^{\frac{3}{2}}\right)\right|_{0} ^{3} \\
& =\frac{2}{3}\left(4^{\frac{3}{2}}-1^{\frac{3}{2}}\right)=\frac{2}{3}(8-1)=\frac{14}{3}
\end{aligned}
$$

10. Compute the integral

$$
\int \frac{x^{2}+2 x}{x^{2}-1} d x
$$

Solution: First we do long division dividing $x^{2}-1$ into $x^{2}+2 x$. Doing this we get that

$$
\frac{x^{2}+2 x}{x^{2}-1}=1+\frac{2 x+1}{x^{2}-1}
$$

and

$$
\begin{equation*}
\int \frac{x^{2}+2 x}{x^{2}-1} d x=\int 1 d x+\int \frac{2 x+1}{x^{2}-1} d x \tag{1}
\end{equation*}
$$

The first integral in (1) is straightforward: $\int 1 d x=x+C$. The second integral is obtained using integration by partial fractions. By partial fractions we obtain:

$$
\frac{2 x+1}{x^{2}-1}=\frac{2 x+1}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}
$$

So we have that

$$
2 x+1=A(x-1)+B(x+1)
$$

Plugging in $x=1$ gives $2 B=3$ and plugging in $x=-1$ gives $-2 A=-1$, so we see that $A=\frac{1}{2}$ and $B=\frac{3}{2}$. Using this decomposition gives

$$
\int \frac{2 x+1}{x^{2}-1} d x=\int \frac{\frac{1}{2}}{x+1} d x+\int \frac{\frac{3}{2}}{x-1} d x=\frac{1}{2} \ln |x+1|+\frac{3}{2} \ln |x-1|+C
$$

Putting it all together, (1) becomes:

$$
\int \frac{x^{2}+2 x}{x^{2}-1} d x=x+\frac{1}{2} \ln |x+1|+\frac{3}{2} \ln |x-1|+C
$$

11. Evaluate the integral

$$
\int_{0}^{1}(1-\sqrt{x})^{8} d x
$$

Solution: We do this with u-substitution. Let $u=1-\sqrt{x}$ so that $\sqrt{x}=1-u$ and hence $x=(1-u)^{2}$. Using this, we see that $d x=-2(1-u) d u$. Also, the bounds of integration go from $x=0$ to $u=1$ and from $x=1$ to $u=0$. Making the substitution gives:

$$
\begin{aligned}
& \int_{0}^{1}(1-\sqrt{x})^{8} d x=\int_{1}^{0}-2(1-u) u^{8} d u=2 \int_{0}^{1}\left(u^{8}-u^{9}\right) d u \\
= & \left.2\left(\frac{u^{9}}{9}-\frac{u^{10}}{10}\right)\right|_{0} ^{1}=2\left(\left(\frac{1}{9}-\frac{1}{10}\right)-0\right)=2\left(\frac{1}{90}\right)=\frac{1}{45} .
\end{aligned}
$$

12. Find the solution to the initial value problem

$$
(1-x) y^{\prime}-y^{2}=1, \quad y(2)=1
$$

Solution: We can make this into a separable equation in the following way:

$$
(1-x) y^{\prime}=y^{2}+1
$$

Now, separate and integrate to find the solution:

$$
\frac{1}{y^{2}+1} d y=\frac{1}{1-x} d x
$$

and so

$$
\begin{gathered}
\int \frac{1}{y^{2}+1} d y=\int \frac{1}{1-x} d x \\
\tan ^{-1}(y)=-\ln |x-1|+C
\end{gathered}
$$

To solve for C we use the initial value $y(2)=1$ giving us that $\tan ^{-1}(1)=-\ln \mid 2-$ $1 \mid+C$ which implies that $C=\tan ^{-1}(1)=\frac{\pi}{4}$. Solving for y we get

$$
y=\tan \left(\frac{\pi}{4}-\ln (x-1)\right)
$$

13. Solve the initial value problem

$$
y^{\prime}=\frac{2 x-y}{1+x}, \quad y(1)=2
$$

Solution: We first rewrite it as $y^{\prime}=\frac{2 x}{1+x}-\frac{y}{1+x}$ which allows us to rewrite as

$$
y^{\prime}+\frac{y}{x+1}=\frac{2 x}{x+1}
$$

Now, it is in standard form for a first-order linear differential equation with $P(x)=$ $\frac{1}{x+1}$ and $Q(x)=\frac{2 x}{x+1}$. We find the integrating factor (noting $\int P(x) d x=\int \frac{1}{x+1} d x=$ $\ln |x+1|)$:

$$
I(x)=e^{\int P(x) d x}=e^{(\ln |x+1|)}=x+1
$$

So the final solution is given by

$$
\begin{aligned}
y(x) & =\frac{1}{I(x)}\left(\int I(x) Q(x) d x\right)=\frac{1}{x+1}\left(\int(x+1)\left(\frac{2 x}{x+1}\right) d x\right) \\
& =\frac{1}{x+1} \int 2 x d x=\frac{1}{x+1}\left(x^{2}+C\right)
\end{aligned}
$$

Using the initial value $y(1)=2$ tells us that $2=\frac{1}{2}(1+C)$ which means $C=3$. So finally we have that

$$
y(x)=\frac{x+1}{x^{2}+3}
$$

